Tuesday, 1 August 2017

Exponential moving average method


Suavização Exponencial Explicada. Cópia Copyright. O conteúdo do InventoryOps está protegido por direitos de autor e não está disponível para republicação. Quando as pessoas encontram pela primeira vez o termo suavização exponencial, eles podem pensar que soa como um inferno de um monte de suavização. Seja qual for a suavização. Eles então começam a imaginar um cálculo matemático complicado que provavelmente requer um grau em matemática para entender, e espero que haja uma função embutida do Excel disponível se eles precisam fazer isso. A realidade da suavização exponencial é muito menos dramática e muito menos traumática. A verdade é, suavização exponencial é um cálculo muito simples que realiza uma tarefa bastante simples. Ele só tem um nome complicado, porque o que tecnicamente acontece como resultado deste cálculo simples é realmente um pouco complicado. Para entender a suavização exponencial, ajuda a começar com o conceito geral de suavização e um par de outros métodos comuns usados ​​para obter suavização. O que é alisamento A suavização é um processo estatístico muito comum. Na verdade, encontramos regularmente dados alisados ​​em várias formas em nossas vidas diárias. Toda vez que você usar uma média para descrever algo, você está usando um número suavizado. Se você pensar sobre por que você usa uma média para descrever algo, você vai rapidamente entender o conceito de suavização. Por exemplo, nós apenas experimentamos o inverno mais quente registrado. Como somos capazes de quantificar este Bem, começamos com conjuntos de dados das temperaturas altas e baixas diárias para o período que chamamos de Inverno para cada ano na história registrada. Mas isso nos deixa com um monte de números que saltam um pouco (não é como todos os dias este inverno foi mais quente do que os dias correspondentes de todos os anos anteriores). Precisamos de um número que elimine tudo isso pulando em torno dos dados para que possamos mais facilmente comparar um inverno para o próximo. Removendo o salto em torno dos dados é chamado de suavização, e neste caso, podemos apenas usar uma média simples para realizar a suavização. Na previsão de demanda, usamos suavização para remover a variação aleatória (ruído) de nossa demanda histórica. Isso nos permite identificar melhor os padrões de demanda (principalmente tendência e sazonalidade) e os níveis de demanda que podem ser usados ​​para estimar a demanda futura. O ruído na demanda é o mesmo conceito que o saltar diário dos dados da temperatura. Não é de surpreender que a forma mais comum de as pessoas removerem o ruído da história de demanda seja usar um simples medidor ou mais especificamente uma média móvel. Uma média móvel apenas usa um número predefinido de períodos para calcular a média, e esses períodos se movem com o passar do tempo. Por exemplo, se eu estou usando uma média móvel de 4 meses, e hoje é 01 de maio, estou usando uma média de demanda que ocorreu em janeiro, fevereiro, março e abril. No dia 1º de junho, estarei usando a demanda de fevereiro, março, abril e maio. Média móvel ponderada. Ao usar uma média, estamos aplicando a mesma importância (peso) a cada valor no conjunto de dados. Na média móvel de 4 meses, cada mês representava 25 da média móvel. Ao usar o histórico de demanda para projetar a demanda futura (e especialmente a tendência futura), é lógico chegar à conclusão de que você gostaria que a história mais recente tivesse um impacto maior em sua previsão. Podemos adaptar nosso cálculo da média móvel para aplicar vários pesos a cada período para obter os resultados desejados. Nós expressamos esses pesos como porcentagens eo total de todos os pesos para todos os períodos deve somar 100. Portanto, se decidimos que queremos aplicar 35 como o peso para o período mais próximo em nossa média móvel ponderada de 4 meses, podemos Subtrair 35 de 100 para achar que temos 65 restantes para dividir sobre os outros 3 períodos. Por exemplo, podemos terminar com uma ponderação de 15, 20, 30 e 35, respectivamente, para os 4 meses (15 20 30 35 100). Suavização exponencial. Se voltarmos ao conceito de aplicar um peso ao período mais recente (como 35 no exemplo anterior) e espalhar o peso restante (calculado subtraindo o peso do período mais recente de 35 de 100 para obter 65), temos Os blocos de construção básicos para o nosso cálculo de suavização exponencial. A entrada de controle do cálculo de suavização exponencial é conhecida como o fator de suavização (também chamado de constante de suavização). Representa essencialmente a ponderação aplicada aos períodos mais recentes de procura. Então, onde usamos 35 como ponderação para o período mais recente no cálculo da média móvel ponderada, também poderíamos escolher usar 35 como o fator de suavização em nosso cálculo de suavização exponencial para obter um efeito semelhante. A diferença com o cálculo de suavização exponencial é que, em vez de ter que também descobrir quanto peso a aplicar a cada período anterior, o fator de suavização é usado para fazer isso automaticamente. Então aqui vem a parte exponencial. Se usarmos 35 como fator de suavização, a ponderação dos períodos mais recentes exigirá 35. A ponderação dos próximos períodos mais recentes demanda (o período anterior ao mais recente) será de 65 de 35 (65 vem de subtrair 35 de 100). Isso equivale a 22,75 ponderação para esse período, se você fizer a matemática. Os próximos períodos mais recentes demanda será de 65 de 65 de 35, o que equivale a 14,79. O período antes disso será ponderado como 65 de 65 de 65 de 35, o que equivale a 9,61, e assim por diante. E isso vai de volta através de todos os seus períodos anteriores todo o caminho de volta para o início do tempo (ou o ponto em que você começou a usar suavização exponencial para esse item em particular). Você provavelmente está pensando que está olhando como um monte de matemática. Mas a beleza do cálculo de suavização exponencial é que, em vez de ter que recalcular cada período anterior cada vez que você obtiver uma nova demanda de períodos, basta usar a saída do cálculo de suavização exponencial do período anterior para representar todos os períodos anteriores. Você está confuso ainda Isso fará mais sentido quando olharmos para o cálculo real Normalmente nos referimos à saída do cálculo de suavização exponencial como a próxima previsão de período. Na realidade, a previsão final precisa de um pouco mais de trabalho, mas para os propósitos deste cálculo específico, vamos nos referir a ele como a previsão. O cálculo de suavização exponencial é o seguinte: Os períodos mais recentes exigidos multiplicados pelo fator de suavização. PLUS Previsão dos períodos mais recentes multiplicada por (um menos o factor de suavização). D os períodos mais recentes exigem S o fator de suavização representado em forma decimal (então 35 seria representado como 0,35). F os períodos mais recentes previstos (a saída do cálculo de suavização do período anterior). OR (assumindo um fator de suavização de 0,35) (D 0,35) (F 0,65) Não é muito mais simples do que isso. Como você pode ver, tudo o que precisamos para entradas de dados aqui são os períodos mais recentes de demanda e os períodos mais recentes previstos. Aplicamos o fator de suavização (ponderação) aos períodos mais recentes, exigindo da mesma forma que o faria no cálculo da média móvel ponderada. Aplicamos então a ponderação restante (1 menos o factor de alisamento) aos períodos mais recentes previstos. Uma vez que a previsão de períodos mais recente foi criada com base na demanda de períodos anteriores e nos períodos anteriores, que se baseou na demanda do período anterior e na previsão do período anterior, baseada na demanda do período anterior E a previsão para o período anterior, que se baseou no período anterior. Bem, você pode ver como todos os períodos anteriores demanda são representados no cálculo sem realmente voltar e recalcular qualquer coisa. E isso é o que levou a popularidade inicial de suavização exponencial. Não era porque fêz um trabalho melhor de suavização do que a média móvel ponderada, era porque era mais fácil de calcular em um programa de computador. E, porque você não precisa pensar sobre o que ponderar para dar períodos anteriores ou quantos períodos anteriores para usar, como você faria na média móvel ponderada. E, porque soava mais frio do que a média móvel ponderada. De fato, pode-se argumentar que a média móvel ponderada proporciona maior flexibilidade, uma vez que você tem mais controle sobre a ponderação dos períodos anteriores. A realidade é que qualquer um destes pode fornecer resultados respeitáveis, então por que não ir com soar mais fácil e mais fresco. Suavização exponencial no Excel Permite ver como isso seria realmente olhar em uma planilha com dados reais. Cópia Copyright. O conteúdo do InventoryOps está protegido por direitos de autor e não está disponível para republicação. Na Figura 1A, temos uma planilha Excel com 11 semanas de demanda, e uma previsão exponencialmente suavizada calculada a partir dessa demanda. Eu usei um fator de suavização de 25 (0,25 na célula C1). A célula ativa atual é Cell M4 que contém a previsão para semana 12. Você pode ver na fórmula barra, a fórmula é (L3C1) (L4 (1-C1)). Portanto, as únicas entradas diretas para este cálculo são a demanda de períodos anteriores (célula L3), os períodos prévios previstos (célula L4) e o fator de suavização (célula C1, mostrada como referência de célula absoluta C1). Quando começamos um cálculo de suavização exponencial, precisamos conectar manualmente o valor para a 1ª previsão. Assim, na célula B4, em vez de uma fórmula, acabamos de digitar a demanda do mesmo período da previsão. Na Célula C4 temos o nosso primeiro cálculo exponencial de suavização (B3C1) (B4 (1-C1)). Podemos então copiar Célula C4 e colá-lo em Células D4 a M4 para preencher o resto de nossas células de previsão. Agora você pode clicar duas vezes em qualquer célula de previsão para ver que é baseado na célula de previsão de períodos anteriores e na célula de demanda de períodos anteriores. Assim, cada subsequente cálculo de suavização exponencial herda a saída do cálculo de suavização exponencial anterior. É assim que cada demanda de períodos anteriores é representada no cálculo dos períodos mais recentes, mesmo que esse cálculo não faça referência direta a esses períodos anteriores. Se você quiser obter fantasia, você pode usar Excels trace antecedentes função. Para fazer isso, clique em Célula M4 e, em seguida, na barra de ferramentas da faixa de opções (Excel 2007 ou 2010), clique na guia Fórmulas e, em seguida, clique em Rastrear precedentes. Ele irá desenhar linhas de conector para o primeiro nível de precedentes, mas se você continuar clicando em Trace Precedents, desenhará linhas de conector para todos os períodos anteriores para mostrar os relacionamentos herdados. Agora vamos ver o que suavização exponencial fez por nós. A Figura 1B mostra um gráfico linear de nossa demanda e previsão. Você caso ver como a previsão exponencial suavizada remove a maior parte do jaggedness (o saltar ao redor) da demanda semanal, mas ainda consegue seguir o que parece ser uma tendência ascendente na demanda. Você também notará que a linha de previsão suavizada tende a ser menor do que a linha de demanda. Isso é conhecido como atraso de tendência e é um efeito colateral do processo de suavização. Toda vez que você usar suavização quando uma tendência está presente sua previsão ficará atrás da tendência. Isto é verdade para qualquer técnica de suavização. De fato, se continuássemos esta planilha e começássemos a inserir números de demanda mais baixos (fazendo uma tendência descendente), veríamos a queda da linha de demanda ea linha de tendência se mover acima dela antes de começar a seguir a tendência descendente. É por isso que eu mencionei anteriormente a saída do cálculo exponencial suavização que chamamos de uma previsão, ainda precisa de algum trabalho mais. Há muito mais a previsão do que apenas alisar as colisões na demanda. Precisamos fazer ajustes adicionais para coisas como defasagem de tendência, sazonalidade, eventos conhecidos que podem afetar a demanda, etc. Mas tudo isso está além do escopo deste artigo. Provavelmente, você também corre em termos como suavização exponencial dupla e suavização tripla exponencial. Esses termos são um pouco enganador, uma vez que você não está re-suavização da demanda várias vezes (você poderia se você quiser, mas isso não é o ponto aqui). Estes termos representam o uso de suavização exponencial em elementos adicionais da previsão. Assim, com a suavização exponencial simples, você está suavizando a demanda básica, mas com a suavização exponencial dupla você está suavizando a demanda base mais a tendência e, com a suavização exponencial tripla, está alisando a demanda básica mais a tendência mais a sazonalidade. A outra pergunta mais comumente questionada sobre a suavização exponencial é onde faço para obter o meu fator de suavização Não há nenhuma resposta mágica aqui, você precisa testar vários fatores de suavização com seus dados de demanda para ver o que você recebe os melhores resultados. Existem cálculos que podem definir automaticamente (e alterar) o fator de suavização. Estes se enquadram no termo alisamento adaptativo, mas você precisa ter cuidado com eles. Simplesmente não há uma resposta perfeita e você não deve cegamente implementar qualquer cálculo sem testes minuciosos e desenvolver uma compreensão completa do que esse cálculo faz. Você também deve executar cenários de ocorrência para ver como esses cálculos reagem às mudanças de demanda que talvez não existam atualmente nos dados de demanda que você está usando para testes. O exemplo de dados que eu usei anteriormente é um bom exemplo de uma situação em que você realmente precisa testar alguns outros cenários. Esse exemplo de dados particulares mostra uma tendência ascendente um tanto consistente. Muitas grandes empresas com software de previsão muito caro entrou em grande problema no passado não tão distante quando suas configurações de software que foram ajustadas para uma economia em crescimento não reagiram bem quando a economia começou a estagnar ou encolher. Coisas como esta acontecem quando você não entende o que seus cálculos (software) está realmente fazendo. Se eles entendessem seu sistema de previsão, eles teriam sabido que precisavam pular e mudar algo quando havia mudanças súbitas e dramáticas em seus negócios. Então, você tem o básico de suavização exponencial explicado. Quer saber mais sobre o uso de suavização exponencial em uma previsão real, confira o meu livro Inventory Management Explained. Cópia Copyright. O conteúdo do InventoryOps está protegido por direitos de autor e não está disponível para republicação. Dave Piasecki. É proprietário / operador da Inventory Operations Consulting LLC. Uma empresa de consultoria que presta serviços relacionados à gestão de inventário, manuseio de materiais e operações de armazém. Tem mais de 25 anos de experiência na gestão de operações e pode ser alcançado através de seu website (www. inventoryops), onde mantém informações adicionais relevantes. Como um exemplo da SMA, considere um título com os seguintes preços de fechamento em 15 dias: Semana 1 (5 dias) 20, 22, 24, 25, 23 Semana 2 (5 dias) 26 28, 26, 29, 27 Semana 3 (5 dias) 28, 30, 27, 29, 28 Uma MA de 10 dias seria a média dos preços de fechamento para os primeiros 10 dias como o primeiro ponto de dados. O ponto de dados seguinte iria cair o preço mais antigo, adicionar o preço no dia 11 e tomar a média, e assim por diante, como mostrado abaixo. Conforme mencionado anteriormente, MAs atraso ação preço atual, porque eles são baseados em preços passados ​​quanto maior for o período de tempo para o MA, maior o atraso. Assim, um MA de 200 dias terá um grau muito maior de atraso do que um MA de 20 dias, pois contém preços nos últimos 200 dias. A duração da MA a ser utilizada depende dos objetivos de negociação, com MAs mais curtos usados ​​para negociação de curto prazo e MAs de longo prazo mais adequados para investidores de longo prazo. O MA de 200 dias é amplamente seguido por investidores e comerciantes, com quebras acima e abaixo desta média móvel considerada como sinais comerciais importantes. MAs também transmitir sinais comerciais importantes por conta própria, ou quando duas médias se cruzam. Um aumento MA indica que a segurança está em uma tendência de alta. Enquanto um declínio MA indica que ele está em uma tendência de baixa. Da mesma forma, o impulso ascendente é confirmado com um crossover de alta. Que ocorre quando um MA de curto prazo cruza acima de um MA de longo prazo. Momento descendente é confirmado com um crossover de baixa, o que ocorre quando um MA de curto prazo cruza abaixo de um MA. A longo prazo série de tempo é uma seqüência de observações de uma variável aleatória periódica. Exemplos disso são a demanda mensal por um produto, a matrícula anual de calouros em um departamento da universidade e os fluxos diários em um rio. As séries cronológicas são importantes para a pesquisa operacional, porque muitas vezes são os impulsionadores dos modelos de decisão. Um modelo de inventário requer estimativas de demandas futuras, um planejamento de curso e modelo de pessoal para um departamento universitário requer estimativas de entrada de estudantes futuros e um modelo para fornecer avisos para a população em uma bacia hidrográfica requer estimativas de fluxos de rios para o futuro imediato. A análise de séries temporais fornece ferramentas para selecionar um modelo que descreve as séries temporais e usar o modelo para prever eventos futuros. Modelar a série temporal é um problema estatístico porque os dados observados são usados ​​em procedimentos computacionais para estimar os coeficientes de um suposto modelo. Os modelos assumem que as observações variam aleatoriamente sobre um valor médio subjacente que é uma função do tempo. Nessas páginas, restringimos a atenção ao uso de dados históricos de séries temporais para estimar um modelo dependente do tempo. Os métodos são apropriados para a previsão automática e de curto prazo de informações freqüentemente usadas onde as causas subjacentes da variação do tempo não estão mudando marcadamente no tempo. Na prática, as previsões derivadas por esses métodos são posteriormente modificadas por analistas humanos que incorporam informações não disponíveis a partir dos dados históricos. Nosso propósito principal nesta seção é apresentar as equações para os quatro métodos de previsão usados ​​no suplemento Forecasting: média móvel, suavização exponencial, regressão e suavização exponencial dupla. Estes são chamados de métodos de suavização. Métodos não considerados incluem a previsão qualitativa, regressão múltipla, e métodos autorregressivos (ARIMA). Aqueles interessados ​​em uma cobertura mais ampla devem visitar o site Previsões Princípios ou ler um dos vários excelentes livros sobre o tema. Usamos o livro Previsão. Por Makridakis, Wheelwright e McGee, John Wiley amp Sons, 1983. Para usar o pasta de trabalho Exemplos do Excel, você deve ter o suplemento de Previsão instalado. Escolha o comando Relink para estabelecer os links para o suplemento. Esta página descreve os modelos utilizados para previsão simples e a notação utilizada para a análise. Este método de previsão mais simples é a previsão média móvel. O método simplesmente médias das últimas m observações. É útil para séries temporais com uma média em mudança lenta. Este método considera todo o passado na sua previsão, mas pesa a experiência recente mais fortemente do que menos recente. Os cálculos são simples porque apenas a estimativa do período anterior e os dados atuais determinam a nova estimativa. O método é útil para séries temporais com uma média em mudança lenta. O método da média móvel não responde bem a uma série temporal que aumenta ou diminui com o tempo. Aqui nós incluímos um termo de tendência linear no modelo. O método de regressão aproxima o modelo construindo uma equação linear que fornece o ajuste de mínimos quadrados às últimas m observações. Média móvel exponencial - EMA Carregando o player. Os EMAs de 12 e 26 dias são as médias de curto prazo mais populares e são usados ​​para criar indicadores como a divergência de convergência média móvel (MACD) eo oscilador de preços percentuais (PPO). Em geral, as EMA de 50 e 200 dias são usadas como sinais de tendências de longo prazo. Traders que empregam análise técnica encontrar médias móveis muito útil e perspicaz quando aplicado corretamente, mas criar havoc quando usado de forma inadequada ou são mal interpretados. Todas as médias móveis normalmente utilizadas na análise técnica são, pela sua própria natureza, indicadores de atraso. Conseqüentemente, as conclusões tiradas da aplicação de uma média móvel a um gráfico de mercado específico devem ser para confirmar um movimento de mercado ou para indicar sua força. Muitas vezes, quando uma linha de indicadores de média móvel fez uma alteração para refletir uma mudança significativa no mercado, o ponto ótimo de entrada no mercado já passou. Um EMA serve para aliviar este dilema em certa medida. Porque o cálculo EMA coloca mais peso sobre os dados mais recentes, ele abraça a ação de preço um pouco mais apertado e, portanto, reage mais rápido. Isto é desejável quando um EMA é usado para derivar um sinal de entrada de negociação. Interpretando a EMA Como todos os indicadores de média móvel, eles são muito mais adequados para mercados de tendências. Quando o mercado está em uma tendência de alta forte e sustentada. A linha de indicador EMA também mostrará uma tendência de alta e vice-versa para uma tendência de queda. Um comerciante vigilante não só prestar atenção à direção da linha EMA, mas também a relação da taxa de mudança de uma barra para a próxima. Por exemplo, à medida que a ação de preço de uma forte tendência de alta começar a se nivelar e reverter, a taxa de mudança da EMA de uma barra para a próxima começará a diminuir até que a linha de indicador se aplana ea taxa de mudança seja zero. Por causa do efeito retardado, por este ponto, ou mesmo alguns bares antes, a ação de preço já deve ter invertido. Por conseguinte, segue-se que a observação de uma diminuição consistente da taxa de variação da EMA poderia ser utilizada como um indicador que poderia contrariar o dilema causado pelo efeito retardado das médias móveis. Usos comuns do EMA EMAs são comumente usados ​​em conjunto com outros indicadores para confirmar movimentos significativos do mercado e para avaliar a sua validade. Para os comerciantes que negociam intraday e mercados em rápido movimento, a EMA é mais aplicável. Muitas vezes os comerciantes usam EMAs para determinar um viés de negociação. Por exemplo, se um EMA em um gráfico diário mostra uma forte tendência ascendente, uma estratégia de comerciantes intraday pode ser a negociação apenas a partir do lado longo em um gráfico intraday. Moving médias - Simple e exponencial Médias móveis - Simple e Exponencial Introdução Os dados de preços para formar um indicador de tendência seguinte. Eles não prevêem a direção do preço, mas sim definir a direção atual com um atraso. As médias móveis são retardadas porque são baseadas em preços passados. Apesar desse atraso, as médias móveis ajudam a suavizar a ação dos preços e filtrar o ruído. Eles também formam os blocos de construção para muitos outros indicadores técnicos e sobreposições, como Bandas Bollinger. MACD eo Oscilador McClellan. Os dois tipos mais populares de médias móveis são a Média Móvel Simples (SMA) e a Média Móvel Exponencial (EMA). Essas médias móveis podem ser usadas para identificar a direção da tendência ou definir níveis potenciais de suporte e resistência. Here039s um gráfico com um SMA e um EMA nele: Cálculo simples da média móvel Uma média movente simples é dada forma computando o preço médio de uma segurança sobre um número específico dos períodos. A maioria das médias móveis são baseadas em preços de fechamento. Uma média móvel simples de 5 dias é a soma de cinco dias dos preços de fechamento dividida por cinco. Como seu nome indica, uma média móvel é uma média que se move. Os dados antigos são eliminados à medida que novos dados são disponibilizados. Isso faz com que a média se mova ao longo da escala de tempo. Abaixo está um exemplo de uma média móvel de 5 dias evoluindo ao longo de três dias. O primeiro dia da média móvel cobre simplesmente os últimos cinco dias. O segundo dia da média móvel cai o primeiro ponto de dados (11) e adiciona o novo ponto de dados (16). O terceiro dia da média móvel continua caindo o primeiro ponto de dados (12) e adicionando o novo ponto de dados (17). No exemplo acima, os preços aumentam gradualmente de 11 para 17 ao longo de um total de sete dias. Observe que a média móvel também aumenta de 13 para 15 ao longo de um período de cálculo de três dias. Observe também que cada valor de média móvel está logo abaixo do último preço. Por exemplo, a média móvel para o dia um é igual a 13 eo último preço é 15. Os preços dos quatro dias anteriores eram mais baixos e isso faz com que a média móvel fique atrasada. Cálculo da média móvel exponencial As médias móveis exponenciais reduzem o desfasamento aplicando mais peso aos preços recentes. A ponderação aplicada ao preço mais recente depende do número de períodos na média móvel. Há três etapas para calcular uma média móvel exponencial. Primeiro, calcule a média móvel simples. Uma média móvel exponencial (EMA) tem que começar em algum lugar assim que uma média móvel simples é usada como o EMA anterior do período anterior no primeiro cálculo. Em segundo lugar, calcular o multiplicador de ponderação. Em terceiro lugar, calcule a média móvel exponencial. A fórmula abaixo é para um EMA de 10 dias. Uma média móvel exponencial de 10 períodos aplica uma ponderação de 18,18 ao preço mais recente. Um EMA de 10 períodos também pode ser chamado de EMA 18.18. Um EMA de 20 períodos aplica uma ponderação de 9,52 ao preço mais recente (2 / (201) .0952). Observe que a ponderação para o período de tempo mais curto é mais do que a ponderação para o período de tempo mais longo. De fato, a ponderação cai pela metade cada vez que o período de média móvel dobra. Se você deseja uma porcentagem específica para uma EMA, use esta fórmula para convertê-la em períodos de tempo e, em seguida, insira esse valor como o parâmetro EMA039s: Abaixo está um exemplo de planilha de uma média móvel simples de 10 dias e um valor de 10- Dia média móvel exponencial para a Intel. As médias móveis simples são diretas e exigem pouca explicação. A média de 10 dias simplesmente se move conforme novos preços se tornam disponíveis e os preços antigos caem. A média móvel exponencial começa com o valor da média móvel simples (22,22) no primeiro cálculo. Após o primeiro cálculo, a fórmula normal assume o controle. Como um EMA começa com uma média móvel simples, seu valor verdadeiro não será realizado até 20 ou mais períodos mais tarde. Em outras palavras, o valor na planilha do Excel pode diferir do valor do gráfico por causa do curto período de retorno. Esta planilha só remonta 30 períodos, o que significa que o afeto da média móvel simples teve 20 períodos para se dissipar. StockCharts volta pelo menos 250 períodos (geralmente muito mais) para os seus cálculos para que os efeitos da média móvel simples no primeiro cálculo totalmente dissipada. O fator de Lag Quanto maior a média móvel, mais o lag. Uma média móvel exponencial de 10 dias abraçará os preços muito de perto e virará logo após os preços virarem. Curtas médias móveis são como barcos de velocidade - ágil e rápido para mudar. Em contraste, uma média móvel de 100 dias contém muitos dados passados ​​que o desaceleram. As médias móveis mais longas são como os petroleiros do oceano - lethargic e lentos mudar. É preciso um movimento de preços maior e mais longo para uma média móvel de 100 dias para mudar de rumo. O gráfico acima mostra o SampP 500 ETF com uma EMA de 10 dias seguindo de perto os preços e uma moagem SMA de 100 dias mais alta. Mesmo com o declínio de janeiro-fevereiro, a SMA de 100 dias manteve o curso e não recusou. O SMA de 50 dias se encaixa entre as médias móveis de 10 e 100 dias quando se trata do fator de latência. Simples vs médias exponenciais Moving Embora existam diferenças claras entre médias móveis simples e médias móveis exponenciais, um não é necessariamente melhor do que o outro. As médias móveis exponenciais têm menos atraso e são, portanto, mais sensíveis aos preços recentes - e às recentes mudanças nos preços. As médias móveis exponenciais virarão antes de médias móveis simples. As médias móveis simples, por outro lado, representam uma verdadeira média de preços para todo o período de tempo. Como tal, as médias móveis simples podem ser mais adequadas para identificar níveis de suporte ou resistência. Preferência média móvel depende de objetivos, estilo analítico e horizonte de tempo. Chartists deve experimentar com ambos os tipos de médias móveis, bem como diferentes prazos para encontrar o melhor ajuste. O gráfico abaixo mostra a IBM com a SMA de 50 dias em vermelho ea EMA de 50 dias em verde. Ambos atingiram o pico no final de janeiro, mas o declínio no EMA foi mais nítida do que o declínio no SMA. A EMA apareceu em meados de fevereiro, mas a SMA continuou baixa até o final de março. Observe que a SMA apareceu mais de um mês após a EMA. Comprimentos e prazos A duração da média móvel depende dos objetivos analíticos. Curtas médias móveis (5-20 períodos) são mais adequados para as tendências de curto prazo e de negociação. Os cartistas interessados ​​em tendências de médio prazo optariam por médias móveis mais longas que poderiam estender-se por 20 a 60 períodos. Investidores de longo prazo preferem médias móveis com 100 ou mais períodos. Alguns comprimentos de média móvel são mais populares do que outros. A média móvel de 200 dias é talvez a mais popular. Devido ao seu comprimento, esta é claramente uma média móvel a longo prazo. Em seguida, a média móvel de 50 dias é bastante popular para a tendência de médio prazo. Muitos chartists usam as médias móveis de 50 dias e de 200 dias junto. Curto prazo, uma média móvel de 10 dias foi bastante popular no passado porque era fácil de calcular. Um simplesmente adicionou os números e moveu o ponto decimal. Identificação de tendências Os mesmos sinais podem ser gerados usando médias móveis simples ou exponenciais. Como mencionado acima, a preferência depende de cada indivíduo. Esses exemplos abaixo usarão médias móveis simples e exponenciais. O termo média móvel se aplica a médias móveis simples e exponenciais. A direção da média móvel transmite informações importantes sobre os preços. Uma média móvel em ascensão mostra que os preços estão aumentando. Uma média móvel em queda indica que os preços, em média, estão caindo. A subida da média móvel de longo prazo reflecte uma tendência de alta a longo prazo. A queda da média móvel a longo prazo reflecte uma tendência de baixa a longo prazo. O gráfico acima mostra 3M (MMM) com uma média móvel exponencial de 150 dias. Este exemplo mostra quão bem as médias móveis funcionam quando a tendência é forte. A EMA de 150 dias recusou-se em novembro de 2007 e novamente em janeiro de 2008. Observe que foi necessário um declínio de 15 para reverter a direção dessa média móvel. Estes indicadores de atraso identificam inversões de tendência à medida que ocorrem (na melhor das hipóteses) ou depois de ocorrerem (na pior das hipóteses). MMM continuou menor em março de 2009 e, em seguida, subiu 40-50. Observe que a EMA de 150 dias não apareceu até depois desse aumento. Uma vez que o fez, no entanto, MMM continuou maior nos próximos 12 meses. As médias móveis trabalham brilhantemente em tendências fortes. Crossovers duplos Duas médias móveis podem ser usadas juntas para gerar sinais cruzados. Na Análise Técnica dos Mercados Financeiros. John Murphy chama isso de método de cruzamento duplo. Os cruzamentos duplos envolvem uma média móvel relativamente curta e uma média móvel relativamente longa. Como com todas as médias móveis, o comprimento geral da média móvel define o prazo para o sistema. Um sistema que utilizasse um EMA de 5 dias e um EMA de 35 dias seria considerado de curto prazo. Um sistema usando uma SMA de 50 dias e um SMA de 200 dias seria considerado de médio prazo, talvez até de longo prazo. Um crossover de alta ocorre quando a média móvel mais curta cruza acima da média móvel mais longa. Isso também é conhecido como uma cruz de ouro. Um crossover de baixa ocorre quando a média móvel mais curta cruza abaixo da média móvel mais longa. Isso é conhecido como uma cruz morta. Os crossovers médios móveis produzem sinais relativamente atrasados. Afinal, o sistema emprega dois indicadores de atraso. Quanto mais longos os períodos de média móvel, maior o atraso nos sinais. Esses sinais funcionam muito bem quando uma boa tendência se apodera. No entanto, um sistema de crossover média móvel irá produzir lotes de Whipsaws na ausência de uma forte tendência. Há também um método de crossover triplo que envolve três médias móveis. Mais uma vez, um sinal é gerado quando a média móvel mais curta atravessa as duas médias móveis mais longas. Um simples sistema de crossover triplo pode envolver médias móveis de 5 dias, 10 dias e 20 dias. O gráfico acima mostra Home Depot (HD) com um EMA de 10 dias (linha pontilhada verde) e EMA de 50 dias (linha vermelha). A linha preta é o fechamento diário. Usando um crossover média móvel teria resultado em três whipsaws antes de pegar um bom comércio. O EMA de 10 dias quebrou abaixo do EMA de 50 dias em outubro atrasado (1), mas este não durou por muito tempo enquanto os 10 dias se moveram para trás acima em novembro meados de (2). Este cruzamento durou mais, mas o próximo crossover de baixa em janeiro (3) ocorreu perto dos níveis de preços de novembro, resultando em outra whipsaw. Esta cruz bearish não durou por muito tempo enquanto o EMA de 10 dias moveu para trás acima dos 50 dias alguns dias mais tarde (4). Depois de três sinais ruins, o quarto sinal prefigurou um movimento forte como o estoque avançou mais de 20. Existem dois takeaways aqui. Primeiramente, os crossovers são prone ao whipsaw. Um filtro de preço ou tempo pode ser aplicado para ajudar a evitar whipsaws. Os comerciantes podem exigir que o crossover durar 3 dias antes de agir ou exigir a EMA de 10 dias para mover acima / abaixo do EMA de 50 dias por um determinado montante antes de agir. Em segundo lugar, o MACD pode ser usado para identificar e quantificar esses cruzamentos. MACD (10,50,1) mostrará uma linha representando a diferença entre as duas médias móveis exponenciais. MACD torna-se positivo durante uma cruz de ouro e negativo durante uma cruz morta. O Oscilador de Preço Percentual (PPO) pode ser usado da mesma forma para mostrar diferenças percentuais. Observe que o MACD e o PPO são baseados em médias móveis exponenciais e não coincidirão com médias móveis simples. Este gráfico mostra Oracle (ORCL) com a EMA de 50 dias, EMA de 200 dias e MACD (50,200,1). Havia quatro crossovers de média móvel durante um período de 2 1/2 anos. Os três primeiros resultaram em whipsaws ou maus negócios. Uma tendência sustentada começou com o quarto crossover como ORCL avançado para os 20s meados. Mais uma vez, os crossovers de média móvel funcionam muito bem quando a tendência é forte, mas produzem perdas na ausência de uma tendência. Crossovers de preço As médias móveis também podem ser usadas para gerar sinais com crossovers de preços simples. Um sinal de alta é gerado quando os preços se movem acima da média móvel. Um sinal de baixa é gerado quando os preços se movem abaixo da média móvel. Os crossovers do preço podem ser combinados para negociar dentro da tendência mais grande. A média móvel mais longa define o tom para a tendência maior e a média móvel mais curta é usada para gerar os sinais. Um olharia para cruzes de preço de alta somente quando os preços já estão acima da média móvel mais longa. Isso seria negociar em harmonia com a maior tendência. Por exemplo, se o preço estiver acima da média móvel de 200 dias, os chartistas só se concentrarão nos sinais quando o preço se mover acima da média móvel de 50 dias. Obviamente, um movimento abaixo da média móvel de 50 dias precederia tal sinal, mas tais cruzamentos de baixa seriam ignorados porque a tendência maior está para cima. Uma cruz bearish sugeriria simplesmente um pullback dentro de um uptrend mais grande. Uma volta cruzada acima da média móvel de 50 dias indicaria uma subida dos preços e continuação da maior tendência de alta. O gráfico seguinte mostra a Emerson Electric (EMR) com a EMA de 50 dias e a EMA de 200 dias. O estoque movido acima e realizada acima da média móvel de 200 dias em agosto. Houve mergulhos abaixo dos 50 dias EMA no início de novembro e novamente no início de fevereiro. Os preços recuaram rapidamente acima dos 50 dias EMA para fornecer sinais de alta (setas verdes) em harmonia com a maior tendência de alta. MACD (1,50,1) é mostrado na janela do indicador para confirmar cruzamentos de preços acima ou abaixo do EMA de 50 dias. O EMA de 1 dia é igual ao preço de fechamento. MACD (1,50,1) é positivo quando o fechamento está acima do EMA de 50 dias e negativo quando o fechamento está abaixo do EMA de 50 dias. Suporte e Resistência As médias móveis também podem atuar como suporte em uma tendência de alta e resistência em uma tendência de baixa. Uma tendência de alta de curto prazo pode encontrar suporte perto da média móvel simples de 20 dias, que também é usada em Bandas de Bollinger. Uma tendência de alta de longo prazo pode encontrar apoio perto da média móvel simples de 200 dias, que é a média móvel mais popular a longo prazo. Se fato, a média móvel de 200 dias pode oferecer suporte ou resistência simplesmente porque é tão amplamente utilizado. É quase como uma profecia auto-realizável. O gráfico acima mostra o NY Composite com a média móvel simples de 200 dias de meados de 2004 até o final de 2008. Os 200 dias fornecidos suportam várias vezes durante o avanço. Uma vez que a tendência reverteu com uma quebra de apoio superior dupla, a média móvel de 200 dias agiu como resistência em torno de 9500. Não espere suporte exato e níveis de resistência de médias móveis, especialmente as médias móveis mais longas. Os mercados são impulsionados pela emoção, o que os torna propensos a superações. Em vez de níveis exatos, as médias móveis podem ser usadas para identificar zonas de suporte ou de resistência. Conclusões As vantagens de usar médias móveis precisam ser ponderadas contra as desvantagens. As médias móveis são a tendência que segue, ou retardar, os indicadores que serão sempre um passo atrás. Isso não é necessariamente uma coisa ruim embora. Afinal, a tendência é o seu amigo e é melhor para o comércio na direção da tendência. As médias móveis asseguram que um comerciante está em linha com a tendência atual. Mesmo que a tendência é seu amigo, os títulos gastam uma grande quantidade de tempo em intervalos de negociação, o que torna as médias móveis ineficazes. Uma vez em uma tendência, as médias móveis mantê-lo-ão dentro, mas dar também sinais atrasados. Don039t esperam vender no topo e comprar na parte inferior usando médias móveis. Tal como acontece com a maioria das ferramentas de análise técnica, médias móveis não devem ser utilizados por conta própria, mas em conjunto com outras ferramentas complementares. Os cartistas podem usar médias móveis para definir a tendência geral e, em seguida, usar RSI para definir overbought ou oversold níveis. Adicionando médias móveis para gráficos StockCharts As médias móveis estão disponíveis como um recurso de sobreposição de preço na bancada do SharpCharts. Usando o menu suspenso Sobreposições, os usuários podem escolher uma média móvel simples ou uma média móvel exponencial. O primeiro parâmetro é usado para definir o número de períodos de tempo. Um parâmetro opcional pode ser adicionado para especificar qual campo de preço deve ser usado nos cálculos - O para o Open, H para o Alto, L para o Baixo e C para o Close. Uma vírgula é usada para separar os parâmetros. Outro parâmetro opcional pode ser adicionado para deslocar as médias móveis para a esquerda (passado) ou para a direita (futuro). Um número negativo (-10) deslocaria a média móvel para a esquerda 10 períodos. Um número positivo (10) deslocaria a média móvel para o direito 10 períodos. Múltiplas médias móveis podem ser superados o preço parcela simplesmente adicionando outra linha de superposição para a bancada. Os membros do StockCharts podem alterar as cores eo estilo para diferenciar entre várias médias móveis. Depois de selecionar um indicador, abra Opções Avançadas clicando no pequeno triângulo verde. As Opções Avançadas também podem ser usadas para adicionar uma sobreposição média móvel a outros indicadores técnicos como RSI, CCI e Volume. Clique aqui para um gráfico ao vivo com várias médias móveis diferentes. Usando Médias Móveis com Varreduras StockCharts Aqui estão alguns exemplos de varreduras que os membros da StockCharts podem usar para varrer para várias situações de média móvel: Bullish Moving Average Cross: Esta varredura procura ações com uma média móvel em ascensão de 150 dias simples e uma linha de alta dos 5 EMA de dia e EMA de 35 dias. A média móvel de 150 dias está subindo, desde que ela esteja negociando acima de seu nível cinco dias atrás. Um cruzamento de alta ocorre quando o EMA de 5 dias se move acima do EMA de 35 dias em volume acima da média. Bearish Moving Average Cross: Esta pesquisa procura por ações com uma queda de 150 dias de média móvel simples e uma cruz de baixa dos 5 dias EMA e 35 dias EMA. A média móvel de 150 dias está caindo enquanto ela está negociando abaixo de seu nível cinco dias atrás. Uma cruz de baixa ocorre quando a EMA de 5 dias se move abaixo da EMA de 35 dias acima do volume médio. Estudo adicional O livro de John Murphy tem um capítulo dedicado a médias móveis e seus vários usos. Murphy abrange os prós e os contras de médias móveis. Além disso, Murphy mostra como as médias móveis funcionam com Bollinger Bands e sistemas de negociação baseados em canais. Análise Técnica dos Mercados Financeiros John Murphy

No comments:

Post a Comment